Videos
Lecture 1 - Intoduction
Lecture 2 - Crystal geometry
Lecture 3 - Unit cell
Lecture 4 - Classification of lattices
Lecture 5 - Gaps in Bravais lattice list
Lecture 6 - Symmetry - I
Lecture 7 - Symmetry - II
Lecture 8 - Classification of lattices on the basis of symmetry
Lecture 9 - A symmetry based approach to Bravais lattices
Lecture 10 - Miller indices of directions
Lecture 11 - Miller indices for planes
Lecture 12 - Miller indices for plane and its normal in Cubic Crystal
Lecture 13 - Weiss Zone law and its applications
Lecture 14 - Inter-planar spacing
Lecture 15 - Bragg’s Law
Lecture 16 - Close-packing of hard spheres
Lecture 17 - Hexagonal Close-Packed (HCP) structure
Lecture 18 - Lattice and motif of HCP crystals
Lecture 19 - c/a ratio of an ideal HCP crystal
Lecture 20 - ABCABC stacking of close-packed spheres
Lecture 21 - Voids in close-packed structures
Lecture 22 - Solid solutions - I
Lecture 23 - Solid solutions - II
Lecture 24 - Hume-Rothery rules
Lecture 25 - Ordered and disordered solid solutions
Lecture 26 - Graphene
Lecture 27 - Structure of graphite
Lecture 28 - Structure of diamond
Lecture 29 - Carbon nanotubes (CNT)
Lecture 30 - Buckminsterfullerene (C60)
Lecture 31 - Ionic solids
Lecture 32 - NaCl
Lecture 33 - CsCl
Lecture 34 - ZnS
Lecture 35 - BCC vs CsCl
Lecture 36 - Amorphous Solids
Lecture 37 - Polymers
Lecture 38 - Vinyl Polymers
Lecture 39 - Thermoplasts and Thermosets
Lecture 40 - Tacticity
Lecture 41 - Copolymers
Lecture 42 - Crystallinity in Polymers
Lecture 43 - Defects in Crystals
Lecture 44 - Vacancies
Lecture 45 - Edge dislocation: Half plane
Lecture 46 - Edge dislocation: Slip
Lecture 47 - Characteristic vectors of a dislocation
Lecture 48 - Edge, screw and mixed dislocations
Lecture 49 - Screw dislocations
Lecture 50 - Burgers circuit
Lecture 51 - Elastic energy of a dislocation line
Lecture 52 - Burgers vector: Shortest lattice translation
Lecture 53 - Burgers vector of a dislocation is constant along the line
Lecture 54 - Geometrical properties of a dislocations: Dislocation cannot end abruptly in a crystal: Free surface
Lecture 55 - Dislocation cannot end abruptly in a crystal: Grain boundaries
Lecture 56 - Dislocation cannot end abruptly in a crystal: Dislocation nodes
Lecture 57 - Dislocation cannot end abruptly in a crystal: Dislocation loop
Lecture 58 - Dislocation motion
Lecture 59 - 2D defects: Surfaces or interfaces
Lecture 60 - Free surface or external surface of the crystal
Lecture 61 - Stacking faults
Lecture 62 - Twin boundary
Lecture 63 - Grain boundary
Lecture 64 - Small angle symmetric tilt boundary
Lecture 65 - Ball bearing model
Lecture 66 - Phase diagrams: Introduction
Lecture 67 - Phases and components
Lecture 68 - Uses of phase diagrams
Lecture 69 - Phases present in the system
Lecture 70 - Composition of phases present in the system
Lecture 71 - Proportion of phases present in the system
Lecture 72 - Microstructure evolution during solidification in isomorphous systems
Lecture 73 - Eutectic system
Lecture 74 - Eutectic reaction
Lecture 75 - Eutectic, hypoeutectic and hypereutectic alloys
Lecture 76 - Gibbs’ phase rule
Lecture 77 - Fe-C phase diagram
Lecture 78 - Eutectoid, hypoeutectoid and hypereutectoid steels
Lecture 79 - Microstructure of a hypoeutectoid steel
Lecture 80 - Microstructure of a hypereutectoid steel
Lecture 81 - Diffusion: Introduction
Lecture 82 - Fick’s first law
Lecture 83 - Fick’s second law
Lecture 84 - Error function solution of Fick’s second law
Lecture 85 - Atomic mechanisms of diffusion
Lecture 86 - Substitutional diffusion revisited
Lecture 87 - Diffusion paths
Lecture 88 - Steady and unsteady state diffusion
Lecture 89 - Phase Transformation
Lecture 90 - Nucleation
Lecture 91 - Nucleation and capillary rise
Lecture 92 - Nucleation, growth and overall transformation
Lecture 93 - Time-temperature-transformation (TTT) diagram
Lecture 94 - Homogeneus and heterogeneous nucleation
Lecture 95 - Heat treatment of steels
Lecture 96 - TTT diagram of Eutectoid Steels
Lecture 97 - Quenching and martensite
Lecture 98 - Austempering and bainite
Lecture 99 - Tempering
Lecture 100 - Residual stresses and Quench cracks
Lecture 101 - Marquenching and martempering
Lecture 102 - TTT diagram of hypoeutectoid and hypereutectoid steels
Lecture 103 - TTT diagram of alloy steel
Lecture 104 - hardenability of steels
Lecture 105 - Glass Ceramics
Lecture 106 - Tensile test
Lecture 107 - Plastic deformation and crystal structure
Lecture 108 - Shape change
Lecture 109 - Slip
Lecture 110 - Resolved shear stress
Lecture 111 - CRSS
Lecture 112 - Schmid's law
Lecture 113 - CRSS:Theory vs experiment
Lecture 114 - Why is experimental CRSS less than theoretical CRSS
Lecture 115 - Strengthening mechaniksms
Lecture 116 - Dislocation density
Lecture 117 - Frank-Read source
Lecture 118 - strain hardening
Lecture 119 - Dislocation interaction leading to strain hardening - I
Lecture 120 - Dislocation interaction leading to strain hardening - II
Lecture 121 - Solid solution hardening
Lecture 122 - Grain size hardening
Lecture 123 - Age hardening - I
Lecture 124 - Age hardening - II
Lecture 125 - Metastable precipitates
Lecture 126 - Annealing of cold-worked metals
Lecture 127 - Recovery
Lecture 128 - Recrystallization
Lecture 129 - Grain Growth
Lecture 130 - True stress and true strain
Lecture 131 - Creep
Lecture 132 - Effect of stress and temperature on creep
Lecture 133 - Creep Mechanisms
Lecture 134 - Composites
Lecture 135 - Isostrain modulus
Lecture 136 - Isostress modulus
Lecture 137 - Fracture
Lecture 138 - Ductile and Brittle Fracture
Lecture 139 - Role of crack size
Lecture 140 - Griffith's Criterion
Lecture 141 - Stress Concentration
Lecture 142 - Ductile to brittle transition
Lecture 143 - Enhancing fracture resistance
Lecture 144 - Toughening of glass: Tempering
Lecture 145 - Toughening of glass: Ion-Exchange
Lecture 146 - Fatigue
Lecture 147 - Sub-Critical crack growth
PDF
Lecture 1 - Intoduction
Lecture 2 - Crystal geometry
Lecture 3 - Unit cell
Lecture 4 - Classification of lattices
Lecture 5 - Gaps in Bravais lattice list
Lecture 6 - Symmetry - I
Lecture 7 - Symmetry - II
Lecture 8 - Classification of lattices on the basis of symmetry
Lecture 9 - A symmetry based approach to Bravais lattices
Lecture 10 - Miller indices of directions
Lecture 11 - Miller indices for planes
Lecture 12 - Miller indices for plane and its normal in Cubic Crystal
Lecture 13 - Weiss Zone law and its applications
Lecture 14 - Inter-planar spacing
Lecture 15 - Bragg’s Law
Lecture 16 - Close-packing of hard spheres
Lecture 17 - Hexagonal Close-Packed (HCP) structure
Lecture 18 - Lattice and motif of HCP crystals
Lecture 19 - c/a ratio of an ideal HCP crystal
Lecture 20 - ABCABC stacking of close-packed spheres
Lecture 21 - Voids in close-packed structures
Lecture 22 - Solid solutions - I
Lecture 23 - Solid solutions - II
Lecture 24 - Hume-Rothery rules
Lecture 25 - Ordered and disordered solid solutions
Lecture 26 - Graphene
Lecture 27 - Structure of graphite
Lecture 28 - Structure of diamond
Lecture 29 - Carbon nanotubes (CNT)
Lecture 30 - Buckminsterfullerene (C60)
Lecture 31 - Ionic solids
Lecture 32 - NaCl
Lecture 33 - CsCl
Lecture 34 - ZnS
Lecture 35 - BCC vs CsCl
Lecture 36 - Amorphous Solids
Lecture 37 - Polymers
Lecture 38 - Vinyl Polymers
Lecture 39 - Thermoplasts and Thermosets
Lecture 40 - Tacticity
Lecture 41 - Copolymers
Lecture 42 - Crystallinity in Polymers
Lecture 43 - Defects in Crystals
Lecture 44 - Vacancies
Lecture 45 - Edge dislocation: Half plane
Lecture 46 - Edge dislocation: Slip
Lecture 47 - Characteristic vectors of a dislocation
Lecture 48 - Edge, screw and mixed dislocations
Lecture 49 - Screw dislocations
Lecture 50 - Burgers circuit
Lecture 51 - Elastic energy of a dislocation line
Lecture 52 - Burgers vector: Shortest lattice translation
Lecture 53 - Burgers vector of a dislocation is constant along the line
Lecture 54 - Geometrical properties of a dislocations: Dislocation cannot end abruptly in a crystal: Free surface
Lecture 55 - Dislocation cannot end abruptly in a crystal: Grain boundaries
Lecture 56 - Dislocation cannot end abruptly in a crystal: Dislocation nodes
Lecture 57 - Dislocation cannot end abruptly in a crystal: Dislocation loop
Lecture 58 - Dislocation motion
Lecture 59 - 2D defects: Surfaces or interfaces
Lecture 60 - Free surface or external surface of the crystal
Lecture 61 - Stacking faults
Lecture 62 - Twin boundary
Lecture 63 - Grain boundary
Lecture 64 - Small angle symmetric tilt boundary
Lecture 65 - Ball bearing model
Lecture 66 - Phase diagrams: Introduction
Lecture 67 - Phases and components
Lecture 68 - Uses of phase diagrams
Lecture 69 - Phases present in the system
Lecture 70 - Composition of phases present in the system
Lecture 71 - Proportion of phases present in the system
Lecture 72 - Microstructure evolution during solidification in isomorphous systems
Lecture 73 - Eutectic system
Lecture 74 - Eutectic reaction
Lecture 75 - Eutectic, hypoeutectic and hypereutectic alloys
Lecture 76 - Gibbs’ phase rule
Lecture 77 - Fe-C phase diagram
Lecture 78 - Eutectoid, hypoeutectoid and hypereutectoid steels
Lecture 79 - Microstructure of a hypoeutectoid steel
Lecture 80 - Microstructure of a hypereutectoid steel
Lecture 81 - Diffusion: Introduction
Lecture 82 - Fick’s first law
Lecture 83 - Fick’s second law
Lecture 84 - Error function solution of Fick’s second law
Lecture 85 - Atomic mechanisms of diffusion
Lecture 86 - Substitutional diffusion revisited
Lecture 87 - Diffusion paths
Lecture 88 - Steady and unsteady state diffusion
Lecture 89 - Phase Transformation
Lecture 90 - Nucleation
Lecture 91 - Nucleation and capillary rise
Lecture 92 - Nucleation, growth and overall transformation
Lecture 93 - Time-temperature-transformation (TTT) diagram
Lecture 94 - Homogeneus and heterogeneous nucleation
Lecture 95 - Heat treatment of steels
Lecture 96 - TTT diagram of Eutectoid Steels
Lecture 97 - Quenching and martensite
Lecture 98 - Austempering and bainite
Lecture 99 - Tempering
Lecture 100 - Residual stresses and Quench cracks
Lecture 101 - Marquenching and martempering
Lecture 102 - TTT diagram of hypoeutectoid and hypereutectoid steels
Lecture 103 - TTT diagram of alloy steel
Lecture 104 - hardenability of steels
Lecture 105 - Glass Ceramics
Lecture 106 - Tensile test
Lecture 107 - Plastic deformation and crystal structure
Lecture 108 - Shape change
Lecture 109 - Slip
Lecture 110 - Resolved shear stress
Lecture 111 - CRSS
Lecture 112 - Schmid's law
Lecture 113 - CRSS:Theory vs experiment
Lecture 114 - Why is experimental CRSS less than theoretical CRSS
Lecture 115 - Strengthening mechaniksms
Lecture 116 - Dislocation density
Lecture 117 - Frank-Read source
Lecture 118 - strain hardening
Lecture 119 - Dislocation interaction leading to strain hardening - I
Lecture 120 - Dislocation interaction leading to strain hardening - II
Lecture 121 - Solid solution hardening
Lecture 122 - Grain size hardening
Lecture 123 - Age hardening - I
Lecture 124 - Age hardening - II
Lecture 125 - Metastable precipitates
Lecture 126 - Annealing of cold-worked metals
Lecture 127 - Recovery
Lecture 128 - Recrystallization
Lecture 129 - Grain Growth
Lecture 130 - True stress and true strain
Lecture 131 - Creep
Lecture 132 - Effect of stress and temperature on creep
Lecture 133 - Creep Mechanisms
Lecture 134 - Composites
Lecture 135 - Isostrain modulus
Lecture 136 - Isostress modulus
Lecture 137 - Fracture
Lecture 138 - Ductile and Brittle Fracture
Lecture 139 - Role of crack size
Lecture 140 - Griffith's Criterion
Lecture 141 - Stress Concentration
Lecture 142 - Ductile to brittle transition
Lecture 143 - Enhancing fracture resistance
Lecture 144 - Toughening of glass: Tempering
Lecture 145 - Toughening of glass: Ion-Exchange
Lecture 146 - Fatigue
Lecture 147 - Sub-Critical crack growth
NPTEL Video Course : NOC:Introduction to Materials Science and Engineering
Lecture 144 - Toughening of glass: Tempering
Home
Previous
Next
Thumbnails