Videos
Lecture 1 - Eulerian and Lagrangian Description of Fluid Motion
Lecture 2 - Lines of Flow Visualization and Acceleration of Flow
Lecture 3 - Angular Deformation of Fluid Elements
Lecture 4 - Linear and Volumetric Deformation; Perspectives from Mass Conservation
Lecture 5 - Continuity Education in Integral Form : Stream Function and Velocity Potential
Lecture 6 - Euler Equation for Inviscid Flow
Lecture 7 - Bernoulli's Equation
Lecture 8 - Examples of Bernoulli's Equation
Lecture 9 - Reynolds Transport Equation
Lecture 10 - Reynolds Transport Theorem : Mass and Linear Momentum Conservation
Lecture 11 - Reynolds transport theorem : arbitrarily moving control volume
Lecture 12 - Reynolds transport theorem : angular momentum conservation
Lecture 13 - Introduction to traction vector and stress tensor
Lecture 14 - Cauchy/Navier equation
Lecture 15 - Navier Stokes equation
Lecture 16 - Navier Stokes equation (Continued...)
Lecture 17 - Some exact solutions of the Navier Stokes equation
Lecture 18 - Interfacial boundary conditions and example of thin film flows
Lecture 19 - Exact solutions of the Navier Stokes equations in cylindrical polar coordinates
Lecture 20 - Exact solutions of the Navier Stokes equation for some unsteady flows
Lecture 21 - Confined oscillatory flows
Lecture 22 - Introduction to Turbulence
Lecture 23 - Statistical Treatment of Turbulence and Near - Wall Velocity Profiles
Lecture 24 - Introduction to Boundary Layer Theory
Lecture 25 - Similarity Solution of Boundary Layer Equation
Lecture 26 - Momentum Integral Method
Lecture 27 - Application of Momentum Integral Method and Boundary Layer Separation
Lecture 28 - Potential Flow
Lecture 29 - Potential Flow (Continued...)
Lecture 30 - Potential Flow (Continued...)
Lecture 31 - Potential Flow (Continued...)
Lecture 32 - Potential Flow (Continued...)
Lecture 33 - Potential Flow (Continued...)
Lecture 34 - Stokes Flow past a Sphere
Lecture 35 - Stokes Flow past a Sphere (Continued...)
Lecture 36 - Stokes Flow past a Sphere (Continued...)
Lecture 37 - Lubrication Theory
Lecture 38 - Lubrication Theory (Continued...)
Lecture 39 - Lubrication Theory (Continued...)
Lecture 40 - Thin Film Dynamics
Lecture 41 - Thin Film Dynamics (Continued...)
Lecture 42 - Thin Film Dynamics (Continued...)
Lecture 43 - Thin Film Dynamics (Continued...)
Lecture 44 - Thin Film Dynamics (Continued...)
Lecture 45 - Thin Film Dynamics (Continued...)
Lecture 46 - Thin Film Dynamics (Continued...)
Lecture 47 - Thin Film Dynamics (Continued...)
Lecture 48 - Compressible Flows
Lecture 49 - Compressible Flows (Continued...)
Lecture 50 - Compressible Flows (Stagnation Properties)
Lecture 51 - Compressible Flows (Stagnation Properties, Variable Area)
Lecture 52 - Compressible Flows (Variable Area)
Lecture 53 - Compressible Flows (Variable Area)
Lecture 54 - Compressible Flows (Normal Shock)
Lecture 55 - Compressible Flows (Normal Shock) (Continued...)
Lecture 56 - Compressible Flows (Converging Nozzle)
Lecture 57 - Compressible Flows (Converging Diverging Nozzle)
Lecture 58 - Compressible Flows (Converging Diverging Nozzle) (Continued...)
Lecture 59 - Compressible Flows with Friction
PDF
Lecture 1 - Eulerian and Lagrangian Description of Fluid Motion
Lecture 2 - Lines of Flow Visualization and Acceleration of Flow
Lecture 3 - Angular Deformation of Fluid Elements
Lecture 4 - Linear and Volumetric Deformation; Perspectives from Mass Conservation
Lecture 5 - Continuity Education in Integral Form : Stream Function and Velocity Potential
Lecture 6 - Euler Equation for Inviscid Flow
Lecture 7 - Bernoulli's Equation
Lecture 8 - Examples of Bernoulli's Equation
Lecture 9 - Reynolds Transport Equation
Lecture 10 - Reynolds Transport Theorem : Mass and Linear Momentum Conservation
Lecture 11 - Reynolds transport theorem : arbitrarily moving control volume
Lecture 12 - Reynolds transport theorem : angular momentum conservation
Lecture 13 - Introduction to traction vector and stress tensor
Lecture 14 - Cauchy/Navier equation
Lecture 15 - Navier Stokes equation
Lecture 16 - Navier Stokes equation (Continued...)
Lecture 17 - Some exact solutions of the Navier Stokes equation
Lecture 18 - Interfacial boundary conditions and example of thin film flows
Lecture 19 - Exact solutions of the Navier Stokes equations in cylindrical polar coordinates
Lecture 20 - Exact solutions of the Navier Stokes equation for some unsteady flows
Lecture 21 - Confined oscillatory flows
Lecture 22 - Introduction to Turbulence
Lecture 23 - Statistical Treatment of Turbulence and Near - Wall Velocity Profiles
Lecture 24 - Introduction to Boundary Layer Theory
Lecture 25 - Similarity Solution of Boundary Layer Equation
Lecture 26 - Momentum Integral Method
Lecture 27 - Application of Momentum Integral Method and Boundary Layer Separation
Lecture 28 - Potential Flow
Lecture 29 - Potential Flow (Continued...)
Lecture 30 - Potential Flow (Continued...)
Lecture 31 - Potential Flow (Continued...)
Lecture 32 - Potential Flow (Continued...)
Lecture 33 - Potential Flow (Continued...)
Lecture 34 - Stokes Flow past a Sphere
Lecture 35 - Stokes Flow past a Sphere (Continued...)
Lecture 36 - Stokes Flow past a Sphere (Continued...)
Lecture 37 - Lubrication Theory
Lecture 38 - Lubrication Theory (Continued...)
Lecture 39 - Lubrication Theory (Continued...)
Lecture 40 - Thin Film Dynamics
Lecture 41 - Thin Film Dynamics (Continued...)
Lecture 42 - Thin Film Dynamics (Continued...)
Lecture 43 - Thin Film Dynamics (Continued...)
Lecture 44 - Thin Film Dynamics (Continued...)
Lecture 45 - Thin Film Dynamics (Continued...)
Lecture 46 - Thin Film Dynamics (Continued...)
Lecture 47 - Thin Film Dynamics (Continued...)
Lecture 48 - Compressible Flows
Lecture 49 - Compressible Flows (Continued...)
Lecture 50 - Compressible Flows (Stagnation Properties)
Lecture 51 - Compressible Flows (Stagnation Properties, Variable Area)
Lecture 52 - Compressible Flows (Variable Area)
Lecture 53 - Compressible Flows (Variable Area)
Lecture 54 - Compressible Flows (Normal Shock)
Lecture 55 - Compressible Flows (Normal Shock) (Continued...)
Lecture 56 - Compressible Flows (Converging Nozzle)
Lecture 57 - Compressible Flows (Converging Diverging Nozzle)
Lecture 58 - Compressible Flows (Converging Diverging Nozzle) (Continued...)
Lecture 59 - Compressible Flows with Friction
NPTEL Video Course : NOC:Advanced Concepts in Fluid Mechanics
Lecture 12 - Reynolds transport theorem : angular momentum conservation
Home
Previous
Next
Thumbnails