Videos
Lecture 1 - Introduction
Lecture 2 - Signal Spaces : Waveforms and Vector Spaces
Lecture 3 - Inner Product and Orthogonal Expansion
Lecture 4 - Signal Spaces : Gram Schmidt Orthogonalization and Receiver Structures
Lecture 5 - Signal Spaces : Fourier Series and Related expansions
Lecture 6 - Signal Spaces : Bandwidth and Degree of Freedom
Lecture 7 - Random Variables and Random Processes : Discrete Random Variable
Lecture 8 - Random Variables and Random Processes : Continuous Random Variable
Lecture 9 - Random Variables and Random Processes : Multiple Random Variable
Lecture 10 - Random Variables and Random Processes : Random Vectors
Lecture 11 - Random Variables and Random Processes : Introduction to Random Process
Lecture 12 - Random Variables and Random Processes : Properties of Random Process
Lecture 13 - Random Variables and Random Processes : Gaussian Random Process - Part 1
Lecture 14 - Random Variables and Random Processes : Gaussian Random Process - Part 2
Lecture 15 - Random Variables and Random Processes : Types of Random Process
Lecture 16 - Random Variables and Random Processes : Random Process through an LTI system
Lecture 17 - Random Variables and Random Processes : Spectral description of Random Process
Lecture 18 - Waveform Coding
Lecture 19 - Modulation : Complex Baseband Representation of Passband Signals - Part 1
Lecture 20 - Modulation : Complex Baseband Representation of Passband Signals - Part 2
Lecture 21 - Modulation : Complex Baseband Representation of Passband Signals - Part 3
Lecture 22 - Modulation : Spectral Description of Sources - Part 1
Lecture 23 - Modulation : Spectral Description of Sources - Part 2
Lecture 24 - Modulation : Spectral Description of Sources using Markov Chains and Cyclostationary Random Processes
Lecture 25 - Modulation : Nyquist Pulses
Lecture 26 - Modulation : Pulse Amplitude Modulation and Quadrature Amplitude Modulation - Part 1
Lecture 27 - Modulation : Pulse Amplitude Modulation and Quadrature Amplitude Modulation - Part 2
Lecture 28 - Modulation : Orthogonal Modulation Schemes
Lecture 29 - Modulation : Differential Modulation Schemes
Lecture 30 - Detection : Maximum Aposteriori Probability (MAP) Detector and Maximum Likelihood (ML) Detector
Lecture 31 - Detection : Vector Detection
Lecture 32 - Detection : Theorem of Irrelevance and Waveform Detection
Lecture 33 - Detection : Sequence Detection
Lecture 34 - Detection : Performance of Binary Signalling Schemes
Lecture 35 - Detection : Performance of M-ary Signaling Schemes
Lecture 36 - Detection : Performance of Orthogonal Modulation Schemes and Bit-Level Demodulation
Lecture 37 - Detection : Performance of Non-Coherent Systems Systems
Lecture 38 - Detection : Fading Channel
PDF
Lecture 1 - Introduction
Lecture 2 - Signal Spaces : Waveforms and Vector Spaces
Lecture 3 - Inner Product and Orthogonal Expansion
Lecture 4 - Signal Spaces : Gram Schmidt Orthogonalization and Receiver Structures
Lecture 5 - Signal Spaces : Fourier Series and Related expansions
Lecture 6 - Signal Spaces : Bandwidth and Degree of Freedom
Lecture 7 - Random Variables and Random Processes : Discrete Random Variable
Lecture 8 - Random Variables and Random Processes : Continuous Random Variable
Lecture 9 - Random Variables and Random Processes : Multiple Random Variable
Lecture 10 - Random Variables and Random Processes : Random Vectors
Lecture 11 - Random Variables and Random Processes : Introduction to Random Process
Lecture 12 - Random Variables and Random Processes : Properties of Random Process
Lecture 13 - Random Variables and Random Processes : Gaussian Random Process - Part 1
Lecture 14 - Random Variables and Random Processes : Gaussian Random Process - Part 2
Lecture 15 - Random Variables and Random Processes : Types of Random Process
Lecture 16 - Random Variables and Random Processes : Random Process through an LTI system
Lecture 17 - Random Variables and Random Processes : Spectral description of Random Process
Lecture 18 - Waveform Coding
Lecture 19 - Modulation : Complex Baseband Representation of Passband Signals - Part 1
Lecture 20 - Modulation : Complex Baseband Representation of Passband Signals - Part 2
Lecture 21 - Modulation : Complex Baseband Representation of Passband Signals - Part 3
Lecture 22 - Modulation : Spectral Description of Sources - Part 1
Lecture 23 - Modulation : Spectral Description of Sources - Part 2
Lecture 24 - Modulation : Spectral Description of Sources using Markov Chains and Cyclostationary Random Processes
Lecture 25 - Modulation : Nyquist Pulses
Lecture 26 - Modulation : Pulse Amplitude Modulation and Quadrature Amplitude Modulation - Part 1
Lecture 27 - Modulation : Pulse Amplitude Modulation and Quadrature Amplitude Modulation - Part 2
Lecture 28 - Modulation : Orthogonal Modulation Schemes
Lecture 29 - Modulation : Differential Modulation Schemes
Lecture 30 - Detection : Maximum Aposteriori Probability (MAP) Detector and Maximum Likelihood (ML) Detector
Lecture 31 - Detection : Vector Detection
Lecture 32 - Detection : Theorem of Irrelevance and Waveform Detection
Lecture 33 - Detection : Sequence Detection
Lecture 34 - Detection : Performance of Binary Signalling Schemes
Lecture 35 - Detection : Performance of M-ary Signaling Schemes
Lecture 36 - Detection : Performance of Orthogonal Modulation Schemes and Bit-Level Demodulation
Lecture 37 - Detection : Performance of Non-Coherent Systems Systems
Lecture 38 - Detection : Fading Channel
NPTEL Video Course : NOC:Principles of Digital Communications (2018)
Lecture 14 - Random Variables and Random Processes : Gaussian Random Process - Part 2
Home
Previous
Next
Thumbnails