Videos
Lecture 1 - Born-Oppenheimer approximation
Lecture 2 - Self-consistent field (SCF) method
Lecture 3 - Simple MO Theory of Hydrogen Molecule
Lecture 4 - Bloch’s theorem
Lecture 5 - Tight binding approximation
Lecture 6 - Energy band theory - 1
Lecture 7 - Energy band theory - 2
Lecture 8 - Density of states
Lecture 9 - Energy band theory - 3
Lecture 10 - Energy band theory - 4
Lecture 11 - Drude’s classical free electron model - 1
Lecture 12 - Drude’s classical free electron model - 2
Lecture 13 - Drude’s classical free electron model - 3
Lecture 14 - Drude’s classical free electron model - 4
Lecture 15 - Sommerfeld’s quantum free electron model
Lecture 16 - Specific heat of Fermi gas
Lecture 17 - Energy dispersion relation in a periodic potential - 1
Lecture 18 - Energy dispersion relation in a periodic potential - 2
Lecture 19 - Brief overview of space groups and constant energy surface in 2D
Lecture 20 - Energy band and effective mass
Lecture 21 - Effective mass
Lecture 22 - k⋅p perturbation method
Lecture 23 - Revisiting Bloch’s theorem and tight binding functions
Lecture 24 - Symmetries in crystal Hamiltonian - 1
Lecture 25 - Symmetries in crystal Hamiltonian - 2
Lecture 26 - Tight binding method - 1
Lecture 27 - Tight binding method - 2
Lecture 28 - Tight binding method - 3
Lecture 29 - Plane wave method
Lecture 30 - Pseudo potential method
Lecture 31 - Cellular method of energy band calculation
Lecture 32 - Muffin tin potential and APW functions
Lecture 33 - Augmented plane wave method of energy band calculation - 1
Lecture 34 - Augmented plane wave method of energy band calculation - 2
Lecture 35 - Green’s function method of energy band calculation - 1
Lecture 36 - Green’s function method of energy band calculation - 2
Lecture 37 - Cyclotron resonance technique
Lecture 38 - De Haas-van Alphen effect
Lecture 39 - De Haas-van Alphen effect conclusion.Introduction to point impurity effect on band structure
Lecture 40 - Point impurity in crystal
Lecture 41 - Friedel Oscillations
Lecture 42 - Lindhard dielectric constant
Lecture 43 - Dielectric anomaly. Crystal momentum
Lecture 44 - Spatial and time reversal symmetries in crystals
Lecture 45 - Time reversal symmetry (Continued...)
Lecture 46 - Spin orbit interaction
Lecture 47 - Disordered solids and transport in disordered solids
Lecture 48 - Optical properties of semiconductors
Lecture 49 - Excitonic states in semiconductors
Lecture 50 - Excitonic states in semiconductors (Continued...)
Lecture 51 - Molecular orbital calculation - I
Lecture 52 - Mott-Hubbard transition
Lecture 53 - Hubbard model
Lecture 54 - Electron repulsion and magnetic exchange
Lecture 55 - Beyond on-site electron repulsions;Pariser-Parr-Pople model
Lecture 56 - Electron-hole symmetry and Pairing theorem. Solitons
Lecture 57 - Density waves in 1-d systems and Lattice vibrations - I
Lecture 58 - Lattice vibrations - II
Lecture 59 - Lattice vibrations - III
Lecture 60 - Lattice vibrations - IV
PDF
Lecture 1 - Born-Oppenheimer approximation
Lecture 2 - Self-consistent field (SCF) method
Lecture 3 - Simple MO Theory of Hydrogen Molecule
Lecture 4 - Bloch’s theorem
Lecture 5 - Tight binding approximation
Lecture 6 - Energy band theory - 1
Lecture 7 - Energy band theory - 2
Lecture 8 - Density of states
Lecture 9 - Energy band theory - 3
Lecture 10 - Energy band theory - 4
Lecture 11 - Drude’s classical free electron model - 1
Lecture 12 - Drude’s classical free electron model - 2
Lecture 13 - Drude’s classical free electron model - 3
Lecture 14 - Drude’s classical free electron model - 4
Lecture 15 - Sommerfeld’s quantum free electron model
Lecture 16 - Specific heat of Fermi gas
Lecture 17 - Energy dispersion relation in a periodic potential - 1
Lecture 18 - Energy dispersion relation in a periodic potential - 2
Lecture 19 - Brief overview of space groups and constant energy surface in 2D
Lecture 20 - Energy band and effective mass
Lecture 21 - Effective mass
Lecture 22 - k⋅p perturbation method
Lecture 23 - Revisiting Bloch’s theorem and tight binding functions
Lecture 24 - Symmetries in crystal Hamiltonian - 1
Lecture 25 - Symmetries in crystal Hamiltonian - 2
Lecture 26 - Tight binding method - 1
Lecture 27 - Tight binding method - 2
Lecture 28 - Tight binding method - 3
Lecture 29 - Plane wave method
Lecture 30 - Pseudo potential method
Lecture 31 - Cellular method of energy band calculation
Lecture 32 - Muffin tin potential and APW functions
Lecture 33 - Augmented plane wave method of energy band calculation - 1
Lecture 34 - Augmented plane wave method of energy band calculation - 2
Lecture 35 - Green’s function method of energy band calculation - 1
Lecture 36 - Green’s function method of energy band calculation - 2
Lecture 37 - Cyclotron resonance technique
Lecture 38 - De Haas-van Alphen effect
Lecture 39 - De Haas-van Alphen effect conclusion.Introduction to point impurity effect on band structure
Lecture 40 - Point impurity in crystal
Lecture 41 - Friedel Oscillations
Lecture 42 - Lindhard dielectric constant
Lecture 43 - Dielectric anomaly. Crystal momentum
Lecture 44 - Spatial and time reversal symmetries in crystals
Lecture 45 - Time reversal symmetry (Continued...)
Lecture 46 - Spin orbit interaction
Lecture 47 - Disordered solids and transport in disordered solids
Lecture 48 - Optical properties of semiconductors
Lecture 49 - Excitonic states in semiconductors
Lecture 50 - Excitonic states in semiconductors (Continued...)
Lecture 51 - Molecular orbital calculation - I
Lecture 52 - Mott-Hubbard transition
Lecture 53 - Hubbard model
Lecture 54 - Electron repulsion and magnetic exchange
Lecture 55 - Beyond on-site electron repulsions;Pariser-Parr-Pople model
Lecture 56 - Electron-hole symmetry and Pairing theorem. Solitons
Lecture 57 - Density waves in 1-d systems and Lattice vibrations - I
Lecture 58 - Lattice vibrations - II
Lecture 59 - Lattice vibrations - III
Lecture 60 - Lattice vibrations - IV
NPTEL Video Course : NOC:Bonds and Bands in Solids
Lecture 21 - Effective mass
Home
Previous
Next
Thumbnails