Videos
Lecture 1 - General introduction
Lecture 2 - Phase space and Liouville's theorem
Lecture 3 - Collisionless Boltzmann equation
Lecture 4 - Boltzmann equation for collisional system - I
Lecture 5 - Boltzmann equation for collisional system - II
Lecture 6 - Equilibrium distribution function - I
Lecture 7 - Equilibrium distribution function - II
Lecture 8 - Derivation of moment equations - I
Lecture 9 - Derivation of moment equations - II
Lecture 10 - Application of moment equations in collisionless systems
Lecture 11 - Derivation of ideal fluid equations
Lecture 12 - Macroscopic forces on an ideal fluid
Lecture 13 - Properties of ideal fluid
Lecture 14 - Kevin's vorticity theorem
Lecture 15 - Conservative form and invariants in ideal fluids
Lecture 16 - Steady flow, streamlines and stream function
Lecture 17 - Departure from Maxwellian distribution
Lecture 18 - Derivation of real fluid equations
Lecture 19 - Hydrostatics: Model of solar corona
Lecture 20 - Stellar/solar wind
Lecture 21 - Accretion disks - I
Lecture 22 - A small digression: Newtonian fluids
Lecture 23 - Accretion disk - II
Lecture 24 - Weak perturbation in a compressible fluid: sound wave
Lecture 25 - Effect of nonlinearity: shocks
Lecture 26 - Supernova explosion and spherical blast waves - I
Lecture 27 - Supernova explosion and spherical blast waves - II
Lecture 28 - de Laval nozzle and extragalactic jets
Lecture 29 - Convective instability and Swarzschild stability criterian
Lecture 30 - Rayleigh Benard convection - I
Lecture 31 - Rayleigh Benard convection - II
Lecture 32 - Jeans instability
Lecture 33 - Waves and instabilities in a two-fluid interface - I
Lecture 34 - Waves and instabilities in a two-fluid interface - II
Lecture 35 - Oscillations of stars
Lecture 36 - Oscillation of stars (Continued...)
Lecture 37 - Rotation in astrofluids and Rayleigh criterion
Lecture 38 - Fluid dynamics in a rotating frame of reference
Lecture 39 - Vorticity theorem in rotating frame and Taylor-Proudman theorem
Lecture 40 - Effect of rotation on a self gravitating mass
Lecture 41 - Effect of rotation in stars
Lecture 42 - Introduction to Plasmas
Lecture 43 - Description of Plasma
Lecture 44 - Kinetic to fluid picture of plasmas
Lecture 45 - MHD fluids: magnetic pressure, magnetic tension and plasma beta
Lecture 46 - Inviscid invariants in MHD
Lecture 47 - Inviscid invariants in MHD (Continued...)
Lecture 48 - Elsasser variables in MHD
Lecture 49 - Linear wave modes in MHD
Lecture 50 - MHD in space plasmas
Lecture 51 - Introduction to turbulence in fluids
Lecture 52 - Richardson-Kolmogorov phenomenology of turbulence
Lecture 53 - Turbulent diffusion
Lecture 54 - Turbulent viscosity
Lecture 55 - Turbulence in MHD fluids
Lecture 56 - Introduction to astrophysical dynamos
Lecture 57 - Anti-dynamo theorem and turbulent dynamos
PDF
Lecture 1 - General introduction
Lecture 2 - Phase space and Liouville's theorem
Lecture 3 - Collisionless Boltzmann equation
Lecture 4 - Boltzmann equation for collisional system - I
Lecture 5 - Boltzmann equation for collisional system - II
Lecture 6 - Equilibrium distribution function - I
Lecture 7 - Equilibrium distribution function - II
Lecture 8 - Derivation of moment equations - I
Lecture 9 - Derivation of moment equations - II
Lecture 10 - Application of moment equations in collisionless systems
Lecture 11 - Derivation of ideal fluid equations
Lecture 12 - Macroscopic forces on an ideal fluid
Lecture 13 - Properties of ideal fluid
Lecture 14 - Kevin's vorticity theorem
Lecture 15 - Conservative form and invariants in ideal fluids
Lecture 16 - Steady flow, streamlines and stream function
Lecture 17 - Departure from Maxwellian distribution
Lecture 18 - Derivation of real fluid equations
Lecture 19 - Hydrostatics: Model of solar corona
Lecture 20 - Stellar/solar wind
Lecture 21 - Accretion disks - I
Lecture 22 - A small digression: Newtonian fluids
Lecture 23 - Accretion disk - II
Lecture 24 - Weak perturbation in a compressible fluid: sound wave
Lecture 25 - Effect of nonlinearity: shocks
Lecture 26 - Supernova explosion and spherical blast waves - I
Lecture 27 - Supernova explosion and spherical blast waves - II
Lecture 28 - de Laval nozzle and extragalactic jets
Lecture 29 - Convective instability and Swarzschild stability criterian
Lecture 30 - Rayleigh Benard convection - I
Lecture 31 - Rayleigh Benard convection - II
Lecture 32 - Jeans instability
Lecture 33 - Waves and instabilities in a two-fluid interface - I
Lecture 34 - Waves and instabilities in a two-fluid interface - II
Lecture 35 - Oscillations of stars
Lecture 36 - Oscillation of stars (Continued...)
Lecture 37 - Rotation in astrofluids and Rayleigh criterion
Lecture 38 - Fluid dynamics in a rotating frame of reference
Lecture 39 - Vorticity theorem in rotating frame and Taylor-Proudman theorem
Lecture 40 - Effect of rotation on a self gravitating mass
Lecture 41 - Effect of rotation in stars
Lecture 42 - Introduction to Plasmas
Lecture 43 - Description of Plasma
Lecture 44 - Kinetic to fluid picture of plasmas
Lecture 45 - MHD fluids: magnetic pressure, magnetic tension and plasma beta
Lecture 46 - Inviscid invariants in MHD
Lecture 47 - Inviscid invariants in MHD (Continued...)
Lecture 48 - Elsasser variables in MHD
Lecture 49 - Linear wave modes in MHD
Lecture 50 - MHD in space plasmas
Lecture 51 - Introduction to turbulence in fluids
Lecture 52 - Richardson-Kolmogorov phenomenology of turbulence
Lecture 53 - Turbulent diffusion
Lecture 54 - Turbulent viscosity
Lecture 55 - Turbulence in MHD fluids
Lecture 56 - Introduction to astrophysical dynamos
Lecture 57 - Anti-dynamo theorem and turbulent dynamos
NPTEL Video Course : NOC:Introduction to Astrophysical Fluids
Lecture 32 - Jeans instability
Home
Previous
Next
Thumbnails